AB Allen-Bradley

Technical Data

PowerFlex ${ }^{(1)}$ 700H High
Power
Adjustable Frequency AC Drives

PowerFlex 700H Adjustable Frequency AC Drive Technical Data

The PowerFlex 700H AC drive offers a cost-effective, compact package for general purpose, variable speed applications. It is designed to meet the demands for space, flexibility and performance. The many features allow the user to easily configure the drive for most application needs. Ratings currently available include 200 to 450 HP output at 480V AC input.

An LCD Human Interface Module (also used with the PowerFlex ${ }^{\circledR}$ 70, 700 and 700S) provides multilingual text for startup, metering, programming, and troubleshooting.

PowerFlex 700 H AC drives are configurable for Volts-per-Hertz or Sensorless Vector control modes to meet a wide variety of application needs. This control is housed in a module which is separately removable from the power structure. The control module is the same for all drive ratings, simplifying installation and maintenance for the entire product line. Optional I/O is available as 24 V DC or 115 V AC.

Optional internal communication modules are available as user-installed kits. These provide fast and efficient control and/or data exchange with host controllers over popular interfaces. These interfaces include; DeviceNet ${ }^{\mathrm{TM}}$, ControlNet ${ }^{\text {TM }}$, Ethernet/IP, Profibus, Interbus, Remote I/O, Serial Communications and other open control and communication networks. PC tools such as DriveExplorer ${ }^{\text {TM }}$ and DriveTools ${ }^{\text {TM }}$ SP assist with programming, monitoring and troubleshooting the PowerFlex 700H.

Table of Contents

Description Page
Catalog Number Explanation 4
Option Selection 5
Accessories 8
Power Wiring. 9
Power Terminals 10
Control Terminals 12
Cable Recommendations 18
Mounting 20
Approximate Dimensions 21
Control and Performance Specifications 23
Drive, Fuse \& Circuit Breaker Ratings 24
Parameter List 26

Flexible Packaging and Mounting

Flexible Programming, Hardware, and Communication Interfaces.

- Advanced features and parameter set modeled after the PowerFlex ${ }^{\circledR} 700$ AC drive.
- Standard I/O includes either 24 V or 115 V digital I/O plus analog I/O.
- NetLinx ${ }^{\mathrm{TM}}$ communication options, including DeviceNet ${ }^{\mathrm{TM}}$, ControlNet ${ }^{\mathrm{TM}}$, and EtherNet/IP networks.

Easy to Use

- Full-featured LCD Human Interface Module (HIM) with multi-line and multi-lingual display simplifies programming.
- Large and easy to read 7 line x 21 character backlit display
- Variety of languages (English, French, German, Italian, Spanish, Portuguese, Dutch)
- Alternate function keys for shortcuts to common tasks
- "Calculator-like" number pad for fast and easy data entry (Full Numeric version only)
- Control keys for local start, stop, speed, and direction
- Remote versions for panel mount application
- S.M.A.R.T. Start and assisted startup routines in the LCD HIM allow for easy configuring and tuning of the drive.
- Pull-apart control terminal blocks allow for easy wiring and quick disconnect of I/O wiring.
- Easy-to-remove control module is common among all PowerFlex 700 H power ratings.
- Optimized global voltage settings designed to worldwide standards allow quick set-up anywhere in the world.
- PC-based configuration tools include:
- DriveExplorer ${ }^{\mathrm{TM}}$ and DriveExplorer Lite

A simple and flexible "On-line" tool for monitoring and configuration while connected to a drive.

- DriveTools ${ }^{\mathrm{TM}} \mathrm{SP}$

A suite of software tools which provide an intuitive means for programming, troubleshooting and maintaining Allen-Bradley AC \& DC drives.

Industry-Standard Packaging

- Modular design and high degree of power structure commonality with equivalent PowerFlex® 700S AC drive ratings for reduced spare parts stocking.
- Standard floor-standing cabinet designs (frame 10 and larger) for compact stand-alone drive applications or multidrive lineups.

Catalog Number Explanation

Position

$480 \mathrm{~V}, 60 \mathrm{~Hz}$ Input			$400 \mathrm{~V}, 60 \mathrm{~Hz}$ Input		
Code	Amps	HP - ND (HD)	Code	Amps	kW - ND (HD)
261	261	200 (150)	261	261	132 (110)
300	300	250 (200)	300	300	160 (132)
385	385	300 (250)	385	385	200 (160)
460	460	350 (300)	460	460	250 (200)
500	500	450 (350)	500	500	250 (200)

(1) Frame 10 \& up only.
(2) Brake IGBT available on Frame 9 drives only.
(3) For use on ungrounded distribution systems (Frame 9 drives only).

PowerFlex 700H Drives

380-500V AC, Three-Phase Drives

480V AC Input					380-500V AC Input					IP21, NEMA Type 1	Frame Size
Output Amps			Normal Duty HP	Heavy Duty HP	Output Amps			Normal Duty kW	Heavy Duty kW	Catalog Number 20C...	
Cont.	1 Min.	2 Sec. 2			Cont.	1 Min.	2 Sec. 2				
261 (205)(1	287 (308)	410 (410)	200	150	261 (205)	287 (308)	410 (410)	132	110	D261A0ANNBNN0	9
300 (245)(1)	330 (368)	450 (490)	250	200	300 (245)	330 (368)	450 (490)	160	132	D300A0ANNBNN0	9
385 (300) $\mathbf{1}$	424 (450)	600 (600)	300	250	385 (300)	424 (450)	600 (600)	200	160	D385A0ANNBNN0	10
460 (385) 1	506 (578)	770 (770)	350	300	460 (385)	506 (578)	770 (770)	250	200	D460A0ANNBNN0	10
500 (420)(1)	550 (630)	750 (840)	450	350	500 (420)	550 (630)	750 (840)	250	200	D500A0ANNBNN0	10

(1) These drives have dual current ratings; one for normal duty applications, and one for heavy duty applications (in parenthesis). The drive may be operated at either rating.
(2) The 2 sec. output current is only available at initial start or drive operating at light load.

Product Selection

Option Selection

Position 9 - Human Interface Modules (HIM)

Position 9 of the catalog string specifies the Human Interface Module (HIM). Four LCD styles are available as well as a blank plate. These HIMs can be factory or user installed.

20C	D	261	A	0	A	Y	N	B	N	N	0
Dive		No a	Enolowe	HIM	Amena	Bate	Brate	Enision	Comm Sot	10	Feathad

Default Value "0" - HIM Not Used (Blank Cover Included)
Choose User Installed Kit — Leave Default Value " 0 "
User Installed Kit ©

Description	Handheld/Local (Drive Mount) Catalog Number
Blank Plate	$20-\mathrm{HIM}-\mathrm{A0}$
LCD Display, Digital Speed	$20-\mathrm{HIM}-\mathrm{A} 2$
LCD Display, Full Numeric Keypad	$20-\mathrm{HIM}-\mathrm{A3}$
LCD Display, Analog Speed Potentiometer	$20-\mathrm{HIM}-\mathrm{A} 4$
LCD Display, Programmer Only	$20-\mathrm{HIM}-\mathrm{A5}$

(1) Separately-Mounted HIMs can be found on page 8, Accessories.
(2) For indoor use only.
(3) Includes a 1202-C30 cable (30 meters).

Choose Catalog Code- Factory Installed Option
Factory Installed Options

Catalog Code: 0 No HIM (Blank Cover)

Catalog Code: 3 LCD Full Numeric

Catalog Code: C Door Mounted LCD Full Numeric Frame 10 Only

Position 10 - Documentation

Position 10 specifies documentation. Documentation set includes Programming \& Installation Manuals.

20C	\mathbf{D}	$\mathbf{2 6 1}$	\mathbf{A}	$\mathbf{0}$	\mathbf{A}	\mathbf{Y}	\mathbf{N}	\mathbf{B}	\mathbf{N}	\mathbf{N}	$\mathbf{0}$
Drive	Voltage Rating	ND Rating	Enclosure	HIM	Documentation	Brake	Brake Resistor	Emission	Comm Slot	I/O	Feedback

Product Selection

Option Selection (continued)

Position 11 - Internal Brake IGBT

Position 11 specifies the Internal Dynamic Brake IGBT.

Position 12 - Dynamic Brake Resistors

Position 12 specifies the Internal Dynamic Brake resistor which is not available at this time.

20C	D	261	A	0	A	N	N	B	N	N	0
Dive	$\substack{\text { Volase } \\ \text { Rating }}$	No R Rating	Enosure	нм	Documenation	Bake		Enision	${ }^{\text {Comm Sot }}$	10	Feeduad
\square Defauliv value "N" - No Dynamic Brake Resistor included $^{\text {a }}$											

Position 13 - EMC Filter

Position 13 identifies the presence of the internal EMC filter (meets second environment CE standards).

(1) Important: For use on ungrounded distribution systems (Frame 9 drives only).

Product Selection

Option Selection (continued)

Position 14 - Communication Adapter

Position 14 selects a communications adapter for the drive. Adapters are available for most industrial networks and can be supplied factory installed or as field kits.

200	D	261	A	0	A	Y	N	B	N	N	0
Drive	Voltage Rating	ND Rating	Enclosure	HIM	Documentation	Brake	Brake Resistor	Emission	Comm Slot	I/O	Feedback

Default Value "N" — Communication Adapters Not Used	
Choose User Installed Kit — Leave Default Value "N"	
User Installed Kit	Catalog Number
Description	$20-C O M M-C$
ControlNet Communication Adapter	$20-C O M M-D$
DeviceNet Communication Adapter	$20-C O M M-E$
Ethernet/IP Communication Adapter	$20-C O M M-H$
HVAC Communication Adapter	$20-C O M M-I$
Interbus Communication Adapter	$20-C O M M-L$
LonWorks Communication Adapter	$20-C O M M-P$
Profibus Communication Adapter	$20-C O M M-R$
Remote I/O Communication Adapter	$20-C O M M-S$
RS-485 DF1 Communication Adapter	$1203-S N M$
Serial Null Modem Adapter	$1203-S S S$
Smart Self-powered Serial Converter (RS-232) - includes	
1203-SFC and 1202-C10 Cables	

Position 15 - l/O Option Card

Position 15 specifies I/O voltage.

Choose User Installed Kit - Leave Default Value "N"	
Description	Catalog No.
24V DC Digital Input w/Analog I/O	20C-DA1-A
115V AC Digital Input w/Analog I/O	20C-DA1-B
115V AC Digital Outputs	20C-D01
Choose Catalog Code - Factory Installed Option	
Description	Catalog Code
24V DC Digital Input w/Analog I/O and 115V AC Digital Output	A(
115V AC Digital Input w/Analog I/O and 115V AC Digital Output	B(
None	N

Option Selection (continued)

Position 16 - Input Cards for Feedback Devices

Position 16 specifies the input card for the desired feedback device.

Accessories

Accessory kits are available to supplement the drive installation or tailor the drive to the particular requirements. These may include installation issues, communications structure or others.

Separately-Mounted Human Interface Module (HIM)

Description	Remote (Panel Mount) IP 66, UL Type 4x12 ©
	Catalog Number
	20 HIM-C3 (

(1) For indoor use only.
(2) Includes a PowerFlex HIM Interface Cable (20-HIM-H10).

Human Interface Module Interface Cables

Description	Catalog Number
Bezel Kit for LCD HIMs, NEMA 1 (20-HIM-B1
PowerFlex HIM Interface Cable, 1 m (39 in.) (2)	20-HIM-H10
Cable Kit (Male-Female) 3 0.33 Meters (1.1 Feet) 1 Meter (3.3 Feet) 3 Meter (9.8 Feet) 9 Meter (29.5 Feet)	$\begin{array}{\|l\|} 1202-\mathrm{H} 03 \\ 1202-\mathrm{H} 10 \\ 1202-\mathrm{H} 30 \\ 1202-\mathrm{H} 90 \end{array}$
DPI/SCANport ${ }^{\text {TM }}$ One to Two Port Splitter Cable	1203-S03

(1) Includes an interface cable (1202-C30) for connection to drive.
(2) Required only when HIM is used as handheld or remote.
(3) Required in addition to 20 -HIM-H10 for distances to a total maximum of 10 Meter (32.8 Feet).

Reflected Wave Reduction

Terminator

Description ©	Used with	Catalog Number (Loose Kit)
IP65 (NEMA Type4x)	$0.37-1.5 \mathrm{~kW}(0.5-2 \mathrm{HP}) 460 \mathrm{~V}$ Drives	$1204-$ TFA1
Connection Cable Included	$0.75-597 \mathrm{~kW}(1-800 \mathrm{HP}) 575 \mathrm{~V}$ Drives	

(1) Correct terminator selection is dependent on motor characteristics, cable type and cable length. Refer to publication 1204-1.0 for application details before ordering.

Product Selection

Power Wiring

The PowerFlex 700 H has the following built in protective features to help simplify installation:

- Ground fault protection during start up and running ensures reliable operation
- Electronic motor overload protection increases motor life
- To ensure compatibility with ungrounded systems, Frame 10 drives incorporate removable MOV to ground and common mode capacitors to ground. Frame 9 drives can be specially ordered to allow compatibility with ungrounded systems.
- 6 kV transient protection provides increased robustness for $380-480 \mathrm{~V}$ system voltages

There are many other factors that must be considered for optimal performance in any given application. The block diagram below highlights the primary installation considerations.
DC Input

Installation Considerations

Terminals

Terminal Locations - Frame 9

Power Terminal Block

Power Terminal Specifications - Frame 9

No.	Name	Description	Wire Size Range 183		Torque Recommended
			Maximum	Minimum	
(1)	Input Power Terminal Block L1, L2, L3	Input power	$\begin{aligned} & 185.0 \mathrm{~mm}^{2} \\ & (350 \mathrm{MCM}) \end{aligned}$	$\begin{aligned} & 95.0 \mathrm{~mm}^{2} \\ & (4 / 0 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 40 \mathrm{~N}-\mathrm{m} \\ & (354 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$
(2)	Output Power Terminal Block U/T1, V/T2, W/T3	Motor connections	$\begin{aligned} & 185.0 \mathrm{~mm}^{2} \\ & (350 \mathrm{MCM}) \end{aligned}$	$\begin{aligned} & 95.0 \mathrm{~mm}^{2} \\ & (4 / 0 \mathrm{AWG}) \end{aligned}$	$40 \mathrm{~N}-\mathrm{m}$ (354 lb .-in.)
(3)	SHLD Terminal, PE, Motor Ground	Terminating point for wiring shields	$\begin{array}{\|l} \hline 95.0 \mathrm{~mm}^{2} \\ \text { (4/0 AWG) } \end{array}$	$\begin{aligned} & 5.0 \mathrm{~mm} 2 \\ & (10 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 22 \mathrm{~N}-\mathrm{m} \\ & (195 \mathrm{lb} . \mathrm{in} .) \end{aligned}$
(4)	DC Bus 2 (2 Terminals; DC-, DC+)	DC input or external brake (Internal Brake option not ordered)	$\begin{aligned} & 185.0 \mathrm{~mm}^{2} \\ & (350 \mathrm{MCM}) \end{aligned}$	$\begin{aligned} & 95.0 \mathrm{~mm}^{2} \\ & (4 / 0 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 40 \mathrm{~N}-\mathrm{m} \\ & (354 \mathrm{lb} . \mathrm{in} .) \end{aligned}$
	DC Bus w/Brake (2 (3 Terminals; DC-, DC+/R+, R-)	DC input/internal brake (Internal Brake option is ordered)	$\begin{aligned} & 185.0 \mathrm{~mm}^{2} \\ & (350 \mathrm{MCM}) \end{aligned}$	$\begin{aligned} & 95.0 \mathrm{~mm}^{2} \\ & \text { (4/0 AWG) } \end{aligned}$	$\begin{aligned} & 40 \mathrm{~N}-\mathrm{m} \\ & (354 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$

(5)

Cable Clamp for Strain Relief
(1) Do Not exceed maximum wire size. Parallel connections may be required.
(2) DC terminal and brake lugs can be removed.
(3) Maximum/minimum sizes that the terminal block will accept - these are not recommendations.

Installation Considerations

Terminals (continued)

Terminal Locations - Frame 10

Power Terminal Specifications - Frame 10

No.	Name	Description	Wire Size Range (12		Torque	$\begin{aligned} & \text { Terminal Bolt } \\ & \text { Size } \mathbf{3 4} \end{aligned}$
			Maximum	Minimum	Recommended	
(1)	Input Power Terminal Block(3 L1, L2, L3	Input power	$\begin{aligned} & 300 \mathrm{~mm}^{2} \\ & (600 \mathrm{MCM}) \end{aligned}$	$\begin{aligned} & 2.1 \mathrm{~mm}^{2} \\ & \text { (14 AWG) } \end{aligned}$	$\begin{aligned} & 40 \mathrm{~N}-\mathrm{m} \\ & (354 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$	M12
(2)	Output Power Terminal Block(3 U/T1, V/T2, W/T3	Motor connections	$\begin{aligned} & 300 \mathrm{~mm}^{2} \\ & (600 \mathrm{MCM}) \end{aligned}$	$\begin{aligned} & 2.1 \mathrm{~mm}^{2} \\ & (14 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 40 \mathrm{~N}-\mathrm{m} \\ & (354 \mathrm{lb} .-\mathrm{in} .) \end{aligned}$	M12
(3)	SHLD Terminal, PE, Motor Ground 3	Terminating point for wiring shields	$\begin{array}{\|l\|} \hline 300 \mathrm{~mm}^{2} \\ (600 \mathrm{MCM}) \end{array}$	$\begin{aligned} & \hline 2.1 \mathrm{~mm}^{2} \\ & \text { (14 AWG) } \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \mathrm{~N}-\mathrm{m} \\ & (354 \mathrm{lb} . \mathrm{in} .) \end{aligned}$	M10
(4)	DC Bus 3 (2 Terminals; DC-, DC+)	DC input or external brake (Internal Brake option not ordered)	$\begin{aligned} & 300 \mathrm{~mm}^{2} \\ & (600 \mathrm{MCM}) \end{aligned}$	$\begin{aligned} & \hline 2.1 \mathrm{~mm} 2 \\ & (14 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 40 \mathrm{~N}-\mathrm{m} \\ & (354 \mathrm{lb} . \mathrm{in} .) \end{aligned}$	M12
	DC Bus w/Brake 3 (3 Terminals; DC-, DC+/R+, R-)	DC input/internal brake (Internal Brake option is ordered)	$\begin{array}{\|l\|} \hline 300 \mathrm{~mm}^{2} \\ (600 \mathrm{MCM}) \end{array}$	$\begin{aligned} & 2.1 \mathrm{~mm}^{2} \\ & \text { (14 AWG) } \end{aligned}$	$\begin{aligned} & 40 \mathrm{~N}-\mathrm{m} \\ & (354 \mathrm{lb} . \mathrm{in} .) \end{aligned}$	M12

(5) Cable Clamp for Strain Relief
(1) Maximum/minimum sizes that the terminal block will accept - these are not recommendations
(2) Do Not exceed maximum wire size. Parallel connections may be required.
(3) These connections are bus bar type terminations and require the use of lug type connectors.
(4) Apply counter torque to the nut on the other side of terminations when tightening or loosening the terminal bolt in order to avoid damage to the terminal.

Installation Considerations

Control Terminals

I/O Terminal Blocks \& Jumpers

I/O Terminal Block Specifications

No.	Name	Description	Wire Size Range ${ }^{\text {c }}$		Torque	
			Maximum	Minimum	Maximum	Recommended
(1)	Analog I/O	Analog I/O Signals	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \\ & (14 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{~mm}^{2} \\ & (22 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & \text { 0.2 N-m } \\ & 1.8 \mathrm{lb} .-\mathrm{in} . \end{aligned}$	$\begin{aligned} & 0.2 \mathrm{~N}-\mathrm{m} \\ & 1.8 \mathrm{lb} . \mathrm{in} . \end{aligned}$
(2)	Digital Inputs	Digital Input Signals	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \\ & \text { (14 AWG) } \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{~mm}^{2} \\ & (22 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & \text { 0.2 N-m } \\ & 1.8 \mathrm{lb} .-\mathrm{in} . \end{aligned}$	$\begin{aligned} & 0.2 \mathrm{~N}-\mathrm{m} \\ & 1.8 \mathrm{lb} .-\mathrm{in} . \end{aligned}$
(3)	Digital Outputs	Digital Out Relays	$\begin{aligned} & 2.5 \mathrm{~mm}^{2} \\ & (14 \mathrm{AWG}) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{~mm}^{2} \\ & (22 \mathrm{AWG}) \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{~N}-\mathrm{m} \\ & 4.5 \mathrm{lb} .-\mathrm{in} . \end{aligned}$	$\begin{aligned} & 0.5 \mathrm{~N}-\mathrm{m} \\ & 4.5 \mathrm{lb} . \mathrm{in} . \end{aligned}$

(1) Maximum/minimum sizes that the terminal block will accept - these are not recommendations.

Installation Considerations

Control Terminals (continued)

I/O Terminal Designations

	No.	Signal		Description	
	1	Analog $\ln 1(-) \mathbf{1}$	4	Isolated ©, bipolar, differential, 9 bit \& sign, 88k ohm input impedance. A jumper (page 14) selects: $0-10 \mathrm{~V}, \pm 10 \mathrm{~V}, 4-20 \mathrm{~mA}$. Default: 0-10V (Ri=200k), 4-20mA (Ri=100 ohm).	$\begin{aligned} & 320- \\ & 327 \end{aligned}$
	2	Analog $\ln 1(+)$ (1)			
	3	Analog $\ln 2(-) \mathbf{1}$			
	4	Analog $\ln 2(+)$ (1)			
	5	-10V Pot Reference	-	2k ohm minimum, 10 mA maximum load, 1\% accuracy.	
	6	Pot Common (GND)		For (+) and (-) 10V pot references.	
	7	+10V Pot Reference	-	2 k ohm minimum, 10 mA maximum load, 1% accuracy.	
	8	Analog Out 1 (+)	4	Bipolar (current out is not bipolar), 9 bit \& sign, 2 k ohm minimum load. A jumper (see page 14) selects: $0-10 \mathrm{~V}, \pm 10 \mathrm{~V}, 4-20 \mathrm{~mA}$.	$\begin{aligned} & 340- \\ & 347 \end{aligned}$
	9	Analog Out Common			
	10	Analog Out 2 (+)			
	11	Digital In 1	Stop - CF	115 V AC, $50 / 60 \mathrm{~Hz}$ - Opto isolated Low State: less than 30V AC High State: greater than 40V AC 24V DC - Opto isolated (250V) Low State: less than 5V DC High State: greater than 20V DC 11.2 mA DC Enable: Digital Input 6 is jumper selectable for HW Enable. On-Time: < 16.7ms, Off-Time < 1 ms	$\begin{aligned} & 361- \\ & 366 \end{aligned}$
	12	Digital In 2	Start		
	13	Digital In 3	Jog		
	14	Digital In 4	Speed Sel 1		
	15	Digital In 5	Speed Sel 2		
	16	Digital In 6/Hardware Enable, see pg. 15	Speed Sel 3		
	$\begin{aligned} & 17 \\ & 18 \end{aligned}$	Digital In Common		Allows source or sink operation. Terminals 17/18 \& 19 can also be used to provide backup power to DPI and control devices.	
	19	+24VDC 0	-	Drive supplied logic input power.	
	20	24 V Common 2	-	Common for internal power supply.	
	21	Digital Out 1 - N.C. ${ }^{\text {c }}$	Fault	Max. Resistive Load: 240V AC/30V DC - 1200VA, 150W Max. Current: 5A, Min. Load: 10mA Max. Inductive Load: 240V AC/30V DC - 840VA, 105W Max. Current: 3.5A, Min. Load: 10 mA	$\begin{array}{\|l\|} \hline 380 \\ 391 \end{array}$
	22	Digital Out 1 Common			
	23	Digital Out 1 - N.O. 3	NOT Fault		
	24	Digital Out 2 - N.C. 3	NOT Run		
	25	Digital Out 2/3 Com.			
	26	Digital Out 3-N.O. 3	Run		

(1) Important: Input must be configured with a jumper. Drive damage may occur if jumper is not installed properly. Refer to page 14.
(2) 150 mA maximum Load. Not present on 115 V versions. Can be used to provide control power from an external 24 V source when main power is not applied. Refer to page 15.
(3) Contacts in unpowered state. Any relay programmed as Fault or Alarm will energize (pick up) when power is applied to drive and deenergize (drop out) when a fault or alarm exists. Relays selected for other functions will energize only when that condition exists and will deenergize when condition is removed.
(4) These inputs/outputs are dependant on a number of parameters (see "Related Parameters").
(5) Differential Isolation - External source must be maintained at less than 160 V with respect to PE . Input provides high common mode immunity

Installation Considerations

I/O Cable Grounding

When installing/stripping shielded multi-conductor cable for analog and digital I/O, allow sufficient distance from the terminal plug to permit attachment to the cable clamp for grounding and strain relief.

Analog I/O Configuration

Important: Analog I/O must be configured through programming, as well as the jumpers shown below.
//O Configuration

Signal	Jumper	Setting			
Analog Inputs	$\begin{aligned} & \mathrm{J} 1(\text { Analog } \ln 1) \\ & \mathrm{J} 2(\text { Analog } \ln 2) \end{aligned}$	0-20 mA	0-10V	$\pm 10 \mathrm{~V}$	
				$\begin{aligned} & \frac{J 1}{\text { AB B C }} \\ & \text { OOOO OO } \\ & 0000 \end{aligned}$	
Analog	J3 (Analog Out 1)	0-20 mA	0-10V	$\pm 10 \mathrm{~V}$	
				$\begin{aligned} & \frac{\mathrm{J3}}{\text { A B C D }} \\ & \text { OOOO } \\ & \text { OOOD } \end{aligned}$	$\begin{aligned} & \frac{\mathrm{J4}}{\text { A BCD }} \\ & \text { OOOO OO } \\ & 0000 \end{aligned}$

Installation Considerations

Hardware Enable Circuitry

By default, the user can program a digital input as an Enable input. The status of this input is interpreted by drive software. If the application requires the drive to be disabled without software interpretation, a "dedicated" hardware enable configuration can be utilized. This is done by removing jumper J5 and wiring the enable input to "Digital In 6" (see below). Verify that [Digital In6 Sel], parameter 366 is set to " 1 , Enable."

Hardware Enable Configuration

Signal	Jumper	Setting	
Hardware Enable	J5	Hardware Enable	Input Programmable (No Hardware Enable)
		$\frac{\mathrm{J} 5}{A B}$	$\frac{\mathrm{~J}}{}$
		$O O$	AB
			00

Auxiliary Power Supply

You may use an auxiliary power supply to keep the PowerFlex 700H Control Unit energized, when input power is deenergized. This provides back-up power for the Control Unit and is sufficient for setting parameters. Connect 24V DC power to pin 19 and 24 V DC common to pin 20 of the 24 V DC version of the I/O card.

Auxiliary Power Supply Specifications

Voltage	Current (Min)	Current (Max)
24 V DC $\pm 15 \%$	150 mA	250 mA

If 24 V terminals of several drives are connected in parallel, we recommend using a diode circuit to block current flow in the opposite direction. Reverse current flow could damage the Control Board.

Installation Considerations

I/O Wiring Examples

Input/Output	Connection Example	Required Parameter Changes
Potentiometer Unipolar Speed Reference ${ }^{0}$ 10k Ohm Pot. Recommended (2k Ohm Minimum)		- Adjust Scaling: Parameters 91/92 and 325/326 - View Results: Parameter 002
Joystick Bipolar Speed Reference ${ }^{\boldsymbol{O}}$ $\pm 10 \mathrm{~V}$ Input		- Set Direction Mode: Parameter 190 = "1, Bipolar" - Adjust Scaling: Parameters 91/92 and 325/326 - View Results: Parameter 002
Analog Input Bipolar Speed Reference $\pm 10 \mathrm{~V}$ Input		- Set Direction Mode: Parameter 190 = "1, Bipolar" - Adjust Scaling: Parameters 91/92 and 325/326 - View Results: Parameter 002
Analog Voltage Input Unipolar Speed Reference 0 to +10V Input		- Configure Input with parameter 320 - Adjust Scaling: Parameters 91/92 and 325/326 - View results: Parameter 002
Analog Current Input Unipolar Speed Reference 4-20 mA Input		- Configure Input for Current: Parameter 320 and add jumper at appropriate terminals - Adjust Scaling: Parameters $91 / 92$ and $325 / 326$ - View results: Parameter 002
Analog Input, PTC PTC OT set > 5V PTC OT cleared < 4V PTC Short < 0.2V		- Set Drive Alarm 1: Parameter 211, bit 11 = "True" - Set Fault Config 1: Parameter 238, bit 7 = "Enabled" - Set Alarm Config 1: Parameter 259, bit 11 = "Enabled"
Analog Output $\pm 10 \mathrm{~V}, 4-20 \mathrm{~mA}$ Bipolar +10V Unipolar (shown)		- Configure with Parameter 340 - Select Source Value: Parameter 384, [Digital Out1 Sel] - Adjust Scaling: Parameters 343/344
2-Wire Control NonReversing ${ }^{(2}$ 24V DC internal supply		- Disable Digital Input:\#1: Parameter 361 = " 0 , Unused" - Set Digital Input \#2: Parameter 362 = "7, Run" - Set Direction Mode: Parameter 190 = "0, Unipolar"

[^0]
Installation Considerations

I/O Wiring Examples (continued)

(1) Important: Programming inputs for 2 wire control deactivates all HIM Start buttons.

Cable Recommendations

Important points to remember about I/O wiring:

- Always use copper wire.
- Wire with an insulation rating of 600 V or greater is recommended.
- Control and signal wires should be separated from power wires by at least 0.3 meters (1 foot).

Important: I/O terminals labeled " $(-)$ " or "Common" are not referenced to earth ground and are designed to greatly reduce common mode interference. Grounding these terminals can cause signal noise.

Signal and Control Wire Types

Recommended Signal Wire

Signal Type	Wire Type(s)	Description	Minimum Insulation Rating
Analog I/O	Belden $8760 / 9460$ (or equiv.)	$0.750 \mathrm{~mm}^{2}(18 \mathrm{AWG})$, twisted pair, 100% shield with drain. $\mathbf{1}$	$300 \mathrm{~V}, 75-90$ degrees C
	Belden 8770 (or equiv.)	$0.750 \mathrm{~mm}^{2}(18 \mathrm{AWG}), 3$ cond., shielded for remote pot only.	$(167-194$ degrees F$)$
EMC Compliance	Refer to Installation Manual for details.		
$\boldsymbol{1}$ If the wires are short and contained within a cabinet which has no sensitive circuits, the use of shielded wire may not be necessary, but is always recommended.			

Recommended Control Wire for Digital I/O

Type	Wire Type(s)		Minimum Insulation Rating
Unshielded	Per US NEC or applicable national or local code	Description	$300 \mathrm{~V}, 60$ degrees C
Shielded	Multi-conductor shielded cable such as Belden 8770 (or equiv.)	$0.750 \mathrm{~mm}^{2}$ (18AWG), 3 conductor, shielded.	(140 degrees F)

Cable Types Acceptable for 200-600 Volt Installations

A variety of cable types are acceptable for drive installations. For many installations, unshielded cable is adequate, provided it can be separated from sensitive circuits. As an approximate guide, allow a spacing of 0.3 meters (1 foot) for every 10 meters (32.8 feet) of length. In all cases, long parallel runs must be avoided. Do not use cable with an insulation thickness less than or equal to $15 \mathrm{mils}(0.4 \mathrm{~mm} / 0.015 \mathrm{in}$.). Use Copper wire only. Wire gauge requirements and recommendations are based on 75 degrees C. Do not reduce wire gauge when using higher temperature wire.

Unshielded Cable

THHN, THWN or similar wire is acceptable for drive installation in dry environments provided adequate free air space and/or conduit fill rates limits are provided. Do not use THHN or similarly coated wire in wet areas. Any wire chosen must have a minimum insulation thickness of $15 \mathrm{mils}(0.4 \mathrm{~mm} / 0.015 \mathrm{in}$.) and should not have large variations in insulation concentricity.

Shielded Cable

Shielded cable contains all of the general benefits of multi-conductor cable with the added benefit of a copper braided shield that can contain much of the noise generated by a typical AC drive. Strong consideration for shielded cable should be given in installations with sensitive equipment such as weigh scales, capacitive proximity switches and other devices that may be affected by electrical noise in the distribution system. Applications with large numbers of drives in a similar location, imposed EMC regulations or a high degree of communications/ networking are also good candidates for shielded cable.

Cable Recommendations (continued)

Shielded cable may also help reduce shaft voltage and induced bearing currents for some applications. In addition, the increased impedance of shielded cable may help extend the distance that the motor can be located from the drive without the addition of motor protective devices such as terminator networks. Refer to Reflected Wave in "Wiring and Grounding Guidelines for PWM AC Drives," publication DRIVES-IN001A-EN-P.

Consideration should be given to all of the general specifications dictated by the environment of the installation, including temperature, flexibility, moisture characteristics and chemical resistance. In addition, a braided shield should be included and be specified by the cable manufacturer as having coverage of at least 75%. An additional foil shield can greatly improve noise containment.

A good example of recommended cable is Belden® 295xx (xx determines gauge). This cable has four (4) XLPE insulated conductors with a 100% coverage foil and an 85% coverage copper braided shield (with drain wire) surrounded by a PVC jacket.

Other types of shielded cable are available, but the selection of these types may limit the allowable cable length. Particularly, some of the newer cables twist 4 conductors of THHN wire and wrap them tightly with a foil shield. This construction can greatly increase the cable charging current required and reduce the overall drive performance. Unless specified in the individual distance tables as tested with the drive, these cables are not recommended and their performance against the lead length limits supplied is not known.

Armored Cable

Cable with continuous aluminum armor is often recommended in drive system applications or specific industries. It offers most of the advantages of standard shielded cable and also combines considerable mechanical strength and resistance to moisture. It can be installed in concealed and exposed manners and removes the requirement for conduit (EMT) in the installation. It can also be directly buried or embedded in concrete.

Because noise containment can be affected by incidental grounding of the armor to building steel when the cable is mounted, it is recommended the armored cable have an overall PVC jacket. Refer to "Wire Types," in publication DRIVES-IN001, Wiring and Grounding Guidelines for Pulse Width Modulated (PWM) AC Drives.

Interlocked armor is acceptable for shorter cable runs, but continuous welded armor is preferred.
Best performance is achieved with 3 spaced ground conductors, but acceptable performance below 200 HP is provided via a single ground conductor.

Recommended Shielded / Armored Cable

Location	Rating/Type	Description
Standard (Option 1)	$600 \mathrm{~V}, 90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$ XHHW2/RHW-2 Anixter B209500-B209507, Belden 29501-29507, or equivalent	- Four tinned copper conductors with XLPE insulation. - Copper braid/aluminum foil combination shield and tinned copper drain wire. - PVC jacket.
Standard (Option 2)	Tray rated 600V, $90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$ RHH/RHW-2 Anixter OLF-7xxxxx or equivalent	- Three tinned copper conductors with XLPE insulation. - 5 mil single helical copper tape (25% overlap min.) with three bare copper grounds in contact with shield. - PVC jacket.
Class I \& II; Division I \& II	Tray rated 600V, $90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$ RHH/RHW-2 Anixter 7V-7xxxx-3G or equivalent	- Three bare copper conductors with XLPE insulation and impervious corrugated continuously welded aluminum armor. - Black sunlight resistant PVC jacket overall. - Three copper grounds on \#10 AWG and smaller.

Installation Considerations

Mounting

Frame 9

Frame 10

Operating Temperatures

Drive requires a minimum of $1300 \mathrm{~m}^{3} / \mathrm{h}$ (765 cfm) of cooling air.

Maximum Surrounding Air Temperature	
Normal Duty	Heavy Duty
0 to 40 degrees C (32 to 104 degrees F)	0 to 50 degrees C (32 to 122 degrees F)

Approximate Dimensions

Frame 9 Dimensions

Dimensions are in millimeters and (inches).

Weight kg (lbs.)	
Drive	Drive \& Packaging
142.9 (315)	176.9 (390)

Installation Considerations

Approximate Dimensions (continued)

Frame 10 Dimensions

Dimensions are in millimeters and (inches)

Weight kg (lbs.)	
Drive	Drive \& Packaging
432 (950)	447 (985)

Control and Performance

Category		PowerFlex 700H
Agency Certification	(1)	Listed to UL508C and CAN/CSA-C2.2 No. 14-M91.
	C	Marked for all applicable European Directives(1) EMC Directive (89/336/EEC) EN 61800-3 Adjustable Speed electrical power drive systems Low Voltage Directive (73/23/EEC) EN 50178 Electronic Equipment for use in Power Installations
		The drive is also designed to meet the following specifications: NFPA 70 - US National Electrical Code NEMA ICS 3.1 - Safety standards for Construction and Guide for Selection, Installation and Operation of Adjustable Speed Drive Systems. IEC 146 - International Electrical Code.

(1) Applied noise impulses may be counted in addition to the standard pulse train causing erroneously high [Pulse Freq] readings

Category	Specification	PowerFlex 700H				
Protection	Drive	380/400	480V	500V	600 V	690 V
	AC Input Overvoltage Trip:	611 V AC	611V AC	611V AC	806 V AC	806V AC
	AC Input Undervoltage Trip:	235 V AC	235 V AC	235 V AC	326V AC	326 V AC
	Bus Overvoltage Trip:	911V DC	911V DC	911V DC	1200V DC	1200 V DC
	Bus Undervoltage Shutoff/Fault:	333 V DC	333 V DC	333 V DC	461V DC	461V DC
	Nominal Bus Voltage (Full Load):	517V DC	621 V DC	645 V DC	776V DC	890V DC
	Heat Sink Thermistor:	Monitored by microprocessor overtemp trip				
	Drive Overcurrent Trip Software Overcurrent Trip:	-				
	Hardware Overcurrent Trip: Instantaneous Current Limit:	360% of rated heavy duty current (typical) -				
	Line transients:	up to 6000 volts peak per IEEE C62.41-1991				
	Control Logic Noise Immunity:	Showering arc transients up to 1500 V peak				
	Power Ride-Thru:	15 milliseconds at full load				
	Logic Control Ride-Thru:	0.5 seconds minimum, 2 seconds typical				
	Ground Fault Trip:	Phase-to-ground on drive output				
	Short Circuit Trip:	Phase-to-phase on drive output				
Environment	Altitude:	1000 m (3300 ft) max. without derating				
	Maximum Surrounding Air Temperature without Derating:	Based on drive rating				
	Storage Temperature (all const.):	-40 to 60 degrees C (-40 to 140 degrees F)				
	Atmosphere:	Important: Drive must not be installed in an area where the ambient atmosphere contains volatile or corrosive gas, vapors or dust. If the drive is not going to be installed for a period of time, it must be stored in an area where it will not be exposed to a corrosive atmosphere.				
	Relative Humidity:	5 to 95\% non-condensing				
	Shock:	15 G peak for $11 \mathrm{~ms} \mathrm{duration} \mathrm{(} \pm 1.0 \mathrm{~ms}$)				
	Vibration:	2.0 mm (0.0787 in.) displacement, 1G peak EN50178/EN60068-2-6				
Electrical	Voltage Tolerance:	-				
	Frequency Tolerance:	$47-63 \mathrm{~Hz}$.				
	Input Phases:	Three-phase input provides full rating for all drives. Single-phase operation provides 50% of rated current.				
	Displacement Power Factor:	0.98 across entire speed range.				
	Efficiency:	97.5\% at rated amps, nominal line volts.				
	Maximum Short Circuit Rating:	200,000 Amps symmetrical.				
	Actual Short Circuit Rating:	Determined by AIC rating of installed fuse/circuit breaker.				
	Maximum Drive to Motor Power Ratio	Recommended not greater than $2: 1$ ratio.				

Category	Specification	PowerFlex 700H
Control	Method:	Sine coded PWM with programmable carrier frequency. Ratings apply to all drives (refer to the Derating Guidelines in the PowerFlex Reference Manual). The drive can be supplied as 6 pulse or 12 pulse in a configured package.
	Carrier Frequency:	Minimum: 1 kHz , Maximum: Dependent on drive rating
	Output Voltage Range:	0 to rated motor voltage
	Output Frequency Range:	0 to 320 Hz
	$\begin{aligned} & \text { Frequency Accuracy } \\ & \text { Digital Input: } \\ & \text { Analog Input: } \end{aligned}$	Within $\pm 0.01 \%$ of set output frequency. Within $\pm 0.4 \%$ of maximum output frequency.
	Frequency Control:	Speed regulation - with Slip Compensation 0.5% of base speed across $40: 1$ speed range 40:1 operating range
	Selectable Motor Control:	Sensorless Vector with full tuning. Standard V/Hz with full custom capability.
	Stop Modes:	Multiple programmable stop modes including - Ramp, Coast, DC-Brake, Ramp-to-Hold and S-curve.
	Accel/Decel:	Two independently programmable accel and decel times. Each time may be programmed from 0 to 3276.7 seconds in 0.1 second increments.
	S-Curve Time	0-100\% of accel/decel time.
	Intermittent Overload:	110% Overload capability for up to 1 minute 150% Overload capability for up to 2 seconds
	Current Limit Capability:	Proactive Current Limit programmable from 20 to 160\% of rated output current. Programmable proportional gain.
	Electronic Motor Overload Protection:	Class 10 protection with speed sensitive response. Investigated by U.L. to comply with N.E.C. Article 430. U.L. File E59272, volume 12.

Drive, Fuse \& Circuit Breaker Ratings

The tables on page 25 provide drive ratings (including continuous, 1 minute $\& 2$ second) and recommended AC line input fuse and circuit breaker information. Both types of short circuit protection are acceptable for UL and IEC requirements. Sizes listed are the recommended sizes based on 40 degree \underline{C} and the U.S. N.E.C. Other country, state or local codes may require different ratings.

Fusing

If fuses are chosen as the desired protection method, refer to the recommended types listed below. If available amp ratings do not match the tables provided, the closest fuse rating that exceeds the drive rating should be chosen.

- IEC - BS88 (British Standard) Parts $1 \& 2^{*}$, EN60269-1, Parts $1 \& 2$, type gG or equivalent should be used.
- UL - UL Class T, J or L must be used.
* Typical designations include, but may not be limited to the following; Parts 1 \& 2: $A C, A D, B C, B D, C D, D D, E D, E F S, E F, F F, F G, G F, G G, G H$.

Circuit Breakers

The "non-fuse" listings in the following tables include both circuit breakers (inverse time or instantaneous trip). If one of these is chosen as the desired protection method, the following requirements apply.

- IEC and UL - Both types of devices are acceptable for IEC and UL installations.

Specifications

400/480 Volt AC Input Protection Devices

Drive Catalog Number		HP Rating		Input Ratings		Output Amps			Dual Element Time Delay Fuse		Non-Time Delay Fuse		$\begin{array}{\|l\|} \hline \text { Circuit } \\ \text { Breaker © } \end{array}$	Motor Circuit Protector (2) Max.©
		ND	HD	Amps	kVA	Cont.	1 Min.	2 Sec.	Min. 3	Max. 4	Min. 3	Max. 4		
400 Volt AC Input														
20xC261	9	132	-	256	171	261	287	410	325	575	325	700	700	400
		-	110	201	139	205	308	410	250	450	250	550	600	400
$20 x C 300$	9	160	-	294	204	300	330	450	375	800	375	800	800	400
		-	132	240	166	245	368	490	325	650	325	650	700	400
20xC385	10	200	-	377	261	385	424	600	500	850	500	1000	800	600
		-	160	294	204	300	450	600	375	675	375	800	800	400
20xC460	10	250	-	451	312	460	506	770	575	1000	575	1200	1200	600
		-	200	377	261	385	578	770	500	850	500	1000	800	600
$20 \times C 500$	10	250	-	490	339	500	550	750	625	1100	625	1400	1200	800
		-	200	411	285	420	630	840	525	900	525	1000	1200	600
480 Volt AC Input														
20xD261	9	200	-	245	204	261	287	410	325	575	325	700	700	400
		-	150	193	160	205	308	410	250	450	250	550	600	400
20xD300	9	250	-	282	234	300	330	450	375	800	375	800	800	400
		-	200	230	191	245	368	490	325	650	325	650	700	400
20xD385	10	300	-	362	301	385	424	600	500	850	500	1000	800	600
		-	250	282	234	300	450	600	375	675	375	800	800	400
20xD460	10	350	-	432	359	460	506	770	575	1000	575	1200	1200	600
		-	300	362	301	385	578	770	500	850	500	1000	800	600
20xD500	10	450	-	469	390	500	550	750	625	1100	625	1400	1200	800
		-	350	394	328	420	630	840	525	900	525	1000	1200	600

(1) Circuit Breaker - inverse time breaker. For US NEC, minimum size is 125% of motor FLA. Ratings shown are maximum
(2) Motor Circuit Protector - instantaneous trip circuit breaker. For US NEC minimum size is 125% of motor FLA. Ratings shown are maximum.
(3) Minimum protection device size is the lowest rated device that supplies maximum protection without nuisance tripping.
(4) Maximum protection device size is the highest rated device that supplies drive protection. For US NEC, minimum size is 125% of motor FLA. Ratings shown are maximum.
(5) Maximum allowable rating by US NEC. Exact size must be chosen for each installation.

540/650 Volt DC Input Protection Devices

$\begin{aligned} & \hline \text { Drive } \\ & \text { Catalog } \\ & \text { Number } \\ & \hline \end{aligned}$		kW Rating		DC Input Ratings		Output Amps			Fuse	Bussmann Style Fuse
		ND	HD	Amps	kW	Cont.	1 Min.	2 Sec.		
540 Volt DC Input										
20xH261	9	132	-	312	161	261	287	410	500	170M6608
		-	110	245	127	205	308	410	500	170M6608
20xH300	9	160	-	359	186	300	330	500	630	170M6610
		-	132	293	152	245	368	490	630	170M6610
20xH385	10	200	-	460	238	385	424	600	700	170M6611
		-	160	359	186	300	450	600	700	170M6611
20xH460	10	250	-	550	284	460	506	770	900	170M6613
		-	200	460	238	385	578	770	900	170M6613
20xH500	10	250	-	598	309	500	550	750	1000	170M6614
		-	200	502	260	420	630	840	1000	170M6614
650 Volt DC Input										
20xJ261	9	200	-	299	186	261	287	410	500	170M6608
		-	150	235	146	205	308	410	500	170M6608
20xJ300	9	250	-	343	213	300	330	500	630	170M6610
		-	200	281	174	245	368	490	630	170M6610
20xJ385	10	300	-	441	274	385	424	600	700	170M6611
		-	250	343	213	300	450	600	700	170M6611
20xJ460	10	350	-	527	327	460	506	770	900	170M6613
		-	300	441	274	385	578	770	900	170M6613
20xJ500	10	450	-	572	356	500	550	750	1000	170M6614
		-	350	481	299	420	630	840	1000	170M6614

Parameter List

Parameter Name	Number	Group
Accel Mask	281	Masks/Owners
Accel Owner	293	Masks/Owners
Accel Time X	140, 141	Ramp Rates
Alarm Clear	261	Alarms
Alarm Config 1	259	Alarms
Alarm X @ Fault	229, 230	Diagnostics
Alarm X Code	262-269	Alarms
Analog In X Hi	322, 325	Analog Inputs
Analog In X Lo	323, 326	Analog Inputs
Analog In X Loss	324,327	Analog Inputs
Analog In1 Value	016	Metering
Analog In2 Value	017	Metering
Analog OutX Hi	343, 346	Analog Outputs
Analog OutX Lo	344,347	Analog Outputs
Analog OutX Sel	342, 345	Analog Outputs
Anlg In Contig	320	Analog Inputs
Anlg In Sqr Root	321	Analog Inputs
Anlg Out Absolut	341	Analog Outputs
Anlg Out Contig	340	Analog Outputs
Anlg OutX Scale	354, 355	Analog Outputs
Anlg OutX Setpt	377, 378	Analog Outputs
Auto Rstrt Delay	175	Restart Modes
Auto Rstrt Tries	174	Restart Modes
Autotune	061	Torq Attributes
Break Frequency	072	Volts per Hertz
Break Voltage	071	Volts per Hertz
Bus Reg Kd	165	Stop/Brake Modes
Bus Reg Ki	160	Stop/Brake Modes
Bus Reg Kp	164	Stop/Brake Modes
Bus Reg Mode X	161, 162	Stop/Brake Modes
Commanded Speed	002	Metering
Control SW Ver	029	Drive Data
Current Lmt Gain	149	Load Limits
Current Lmt Sel	147	Load Limits
Current Lmt Val	148	Load Limits
Data In XX	300-307	Datalinks
Data Out XX	310-317	Datalinks
DB Resistor Type	163	Stop/Brake Modes
DC Brake Level	158	Stop/Brake Modes
DC Brake Time	159	Stop/Brake Modes
DC Brk Lvi Sel	157	Stop/Brake Modes
DC Bus Memory	013	Metering
DC Bus Voltage	012	Metering
Decel Mask	282	Masks/Owners
Decel Owner	294	Masks/Owners
Decel Time X	142, 143	Ramp Rates
Dig In Status	216	Diagnostics
Dig Out Setpt	379	Digital Outputs
Dig Out Status	217	Diagnostics
Dig OutX Level	381, 385, 389	Digital Outputs
Dig Out X Offime	383, 387, 391	Digital Outputs
Dig OutX OnTime	382, 386, 390	Digital Outputs
Digital InX Sel	361-366	Digital Inputs
Digital OutX Sel	380, 384, 388	Digital Outputs
Direction Mask	279	Masks/Owners
Direction Mode	190	Direction Config
Direction Owner	291	Masks/Owners
DPI Port Sel	274	Comm Control
DPI Port Value	275	Comm Control
Drive Alarm X	211, 212	Diagnostics
Drive Checksum	203	Drive Memory
Drive Logic Rsit	271	Comm Control
Drive Ramp Rslt	273	Comm Control
Drive Ref Rstt	272	Comm Control
Drive Status X	209, 210	Diagnostics
Drive Temp	218	Diagnostics
Droop RPM @ FLA	152	Load Limits
Elapsed MWh	009	Metering
Elapsed Run Time	010	Metering
Fault 1 Code	243	Faults
Fault 1 Time	244	Faults

Parameter Name	Number	Group
Fault 2 Code	245	Faults
Fault 2 Time	246	Faults
Fault 3 Code	247	Faults
Fault 3 Time	248	Faults
Fault 4 Code	249	Faults
Fault 4 Time	250	Faults
Fault 5 Code	251	Faults
Fault 5 Time	252	Faults
Fault 6 Code	253	Faults
Fault 6 Time	254	Faults
Fault 7 Code	255	Faults
Fault 7 Time	256	Faults
Fault 8 Code	257	Faults
Fault 8 Time	258	Faults
Fault Amps	225	Diagnostics
Fault Bus Volts	226	Diagnostics
Fault Clear	240	Faults
Fault Clear Mode	241	Faults
Fault Clr Mask	283	Masks/Owners
Fault Clr Owner	295	Masks/Owners
Fault Config 1	238	Faults
Fault Frequency	224	Diagnostics
Feedback Select	080	Spd Mode/Limits
Flux Current	005	Metering
Flux Current Ref	063	Torq Attributes
Flux Up Mode	057	Torq Attributes
Flux Up Time	058	Torq Attributes
Flying Start En	169	Restart Modes
IR Voltage Drop	062	Torq Attributes
Ixo Voltage Drop	064	Torq Attributes
Jog Mask	278	Masks/Owners
Jog Owner	290	Masks/Owners
Jog Speed 1	100	Discrete Speeds
Jog Speed 2	108	Discrete Speeds
Language	201	Drive Memory
Last Stop Source	215	Diagnostics
Load Frm Usr Set	198	Drive Memory
Local Mask	285	Masks/Owners
Local Owner	297	Masks/Owners
Logic Mask	276	Masks/Owners
Man Ref Preload	193	HIM Ref Config
Maximum Freq	055	Torq Attributes
Maximum Speed	082	Spd Mode/Limits
Minimum Speed	081	Spd Mode/Limits
MOP Mask	284	Masks/Owners
MOP Owner	296	Masks/Owners
MOP Rate	195	MOP Config
MOP Reference	011	Metering
Motor Cntl Sel	053	Torq Attributes
Motor NP FLA	042	Motor Data
Motor NP Hertz	043	Motor Data
Motor NP Power	045	Motor Data
Motor NP RPM	044	Motor Data
Motor NP Volts	041	Motor Data
Motor OL Count	220	Diagnostics
Motor OL Factor	048	Motor Data
Motor OL Hertz	047	Motor Data
Motor Poles	049	Motor Data
Motor Type	040	Motor Data
Mtr NP Pwr Units	046	Motor Data
Output Current	003	Metering
Output Freq	001	Metering
Output Power	007	Metering
Output Powr Fctr	008	Metering
Output Voltage	006	Metering
Overspeed Limit	083	Spd Mode/Limits
Param Access LvI	196	Drive Memory
PI Configuration	124	Process PI
PI Control	125	Process PI
PI Error Meter	137	Process PI
PI Fdback Meter	136	Process PI
PIFeedback Hi	462	Process PI

Parameter Name	Number	Group
PI Feedback Lo	463	Process PI
PI Feedback Sel	128	Process PI
PI Integral Time	129	Process PI
PI Lower Limit	131	Process PI
PI Output Meter	138	Process PI
PI Preload	133	Process PI
PI Prop Gain	130	Process PI
PI Ref Meter	135	Process PI
Pl Reference Hi	460	Process PI
PI Reference Lo	461	Process PI
PI Reference Sel	126	Process PI
PI Setpoint	127	Process PI
PI Status	134	Process PI
PI Upper Limit	132	Process PI
Power Loss Volts	186	Power Loss
Power Loss Mode	184	Power Loss
Power Loss Time	185	Power Loss
Power Up Marker	242	Faults
Powerup Delay	167	Restart Modes
Preset Speed X	101-107	Discrete Speeds
PWM Frequency	151	Load Limits
Ramped Speed	022	Metering
Rated Amps	028	Drive Data
Rated kW	026	Drive Data
Rated Volts	027	Drive Data
Reference Mask	280	Masks/Owners
Reference Owner	292	Masks/Owners
Reset Meters	200	Drive Memory
Reset To Defalts	197	Drive Memory
Rev Speed Limit	454	Speed Regulator
S Curve \%	146	Ramp Rates
Save HIM Ref	192	HIM Ref Config
Save MOP Ref	194	MOP Config
Save To User Set	199	Drive Memory
Skip Freq Band	087	Spd Mode/Limits
Skip Frequency X	084-086	Spd Mode/Limits
Sleep Level	182	Restart Modes
Sleep Time	183	Restart Modes
Sleep-Wake Mode	178	Restart Modes
Sleep-Wake Ref	179	Restart Modes
Slip RPM @ FLA	121	Slip Comp
Slip RPM Meter	123	Slip Comp
Speed Feedback	025	Metering
Speed Ref Source	213	Diagnostics
Speed Ref X Hi	091, 094	Speed Reference
Speed Ref X Lo	092, 095	Speed Reference
Speed Ref X Sel	090, 093	Speed Reference
Speed Reference	023	Metering
Speed Units	079	Spd Mode/Limits
Speed/Torque Mod	088	Spd Mode/Limits
Start At PowerUp	168	Restart Modes
Start Inhibits	214	Diagnostics
Start Mask	277	Masks/Owners
Start Owner	289	Masks/Owners
Start/Acc Boost	069	Volts per Hertz
Status X @ Fault	227, 228	Diagnostics
Stop Owner	288	Masks/Owners
Stop/BRK Mode X	155, 156	Stop/Brake Modes
SV Boost Filter	059	Torq Attributes
TB Man Ref Hi	097	Speed Reference
TB Man Ref Lo	098	Speed Reference
TB Man Ref Sel	096	Speed Reference
Torque Current	004	Metering
Trim Hi	119	Speed Trim
Trim In Select	117	Speed Trim
Trim Lo	120	Speed Trim
Trim Out Select	118	Speed Trim
Wake Level	180	Restart Modes
Wake Time	181	Restart Modes
Voltage Class	202	Drive Memory

Rockwell Automation is committed to maintaining and supporting Allen-Bradley drives and installations. Included in this commitment is start-up support and consultation for drive applications.

ProtectionPlus Drive Start-Up

With ProtectionPlus Drives Start-Up Services from Rockwell Automation, users can leverage the extensive product and industry experience of Rockwell Automation technicians to quickly commission drives and reduce the time between integration and actual start-up.

ProtectionPlus Drive Start-Up Services verify drive installation to ensure proper electrical, mechanical and environmental criteria are met. This includes verification of power and I/O wiring to the drive, custom drive configuration/tuning to meet application specific requirements, and diagnosing/troubleshooting problems that occur during a standalone drive start-up. ProtectionPlus can also extend an eligible product parts warranty and add a labor warranty. For more information about ProtectionPlus Drives Services, contact your local Rockwell Automation sales office or authorized distributor, or visit: http://support.rockwellautomation.com/SupportPrograms.

PowerFlex is a registered trademark of Rockwell Automation.
DriveExplorer, DriveTools SP, DPI and PanelView are trademarks of Rockwell Automation.
ControlNet is a trademark of ControlNet International, Ltd.
DeviceNet is a trademark of the Open DeviceNet Vendor Association.

www.rockwellautomation.com

Corporate Headquarters

Rockwell Automation, 777 East Wisconsin Avenue, Suite 1400, Milwaukee, WI, 53202-5302 USA, Tel: (1) 414.212.5200, Fax: (1) 414.212 .5201

Headquarters for Allen-Bradley Products, Rockwell Software Products and Global Manufacturing Solutions

Americas: Rockwell Automation, 1201 South Second Street, Milwaukee, WI 53204-2496 USA, Tel: (1) 414.382.2000, Fax: (1) 414.382 .4444
Europe/Middle East/Africa: Rockwell Automation SA/NV, Vorstlaan/Boulevard du Souverain 36, 1170 Brussels, Belgium, Tel: (32) 26630600 , Fax: (32) 26630640
Asia Pacific: Rockwell Automation, 27/F Citicorp Centre, 18 Whitfield Road, Causeway Bay, Hong Kong, Tel: (852) 2887 4788, Fax: (852) 25081846

Headquarters for Dodge and Reliance Electric Products

Americas: Rockwell Automation, 6040 Ponders Court, Greenville, SC 29615-4617 USA, Tel: (1) 864.297.4800, Fax: (1) 864.281.2433
Europe/Middle East/Africa: Rockwell Automation, Brühlstraße 22, D-74834 Elztal-Dallau, Germany, Tel: (49) 6261 9410, Fax: (49) 626117741
Asia Pacific: Rockwell Automation, 55 Newton Road, \#11-01/02 Revenue House, Singapore 307987, Tel: (65) 6356-9077, Fax: (65) 6356-9011

U.S. Allen-Bradley Drives Technical Support

Tel: (1) 262.512.8176, Fax: (1) 262.512.2222, Email: support@drives.ra.rockwell.com, Online: www.ab.com/support/abdrives

[^0]: (1) Refer to the Installation Manual for important bipolar wiring information.
 (2) Important: Programming inputs for 2 wire control deactivates all HIM Start buttons.

